Transform unstructured data (PDFs, DOCs, TXTs, YouTube videos, web pages, etc.) into a structured Knowledge Graph stored in Neo4j using the power of Large Language Models (LLMs) and the LangChain framework.
This application allows you to upload files from various sources (local machine, GCS, S3 bucket, or web sources), choose your preferred LLM model, and generate a Knowledge Graph.
- Python 3.12 or higher (for local/separate backend deployment)
- Neo4j Database 5.23 or later with APOC installed.
- Neo4j Aura databases (including the free tier) are supported.
- If using Neo4j Desktop, you will need to deploy the backend and frontend separately (docker-compose is not supported).
- Create a
.envfile in thebackendfolder by copyingbackend/example.env. - Pre-configure user credentials in the
.envfile to bypass the login dialog:NEO4J_URI=<your-neo4j-uri> NEO4J_USERNAME=<your-username> NEO4J_PASSWORD=<your-password> NEO4J_DATABASE=<your-database-name>
- Run:
cd backend python3.12 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate pip install -r requirements.txt -c constraints.txt uvicorn score:app --reload
- Seamlessly transform unstructured data into structured Knowledge Graphs using advanced LLMs.
- Extract nodes, relationships, and their properties to create structured graphs.
- Use a custom schema or existing schemas configured in the settings to generate graphs.
- View graphs for specific or multiple data sources simultaneously in Neo4j Bloom.
- Interact with your data in the Neo4j database through conversational queries.
- Retrieve metadata about the source of responses to your queries.
- For a dedicated chat interface, use the standalone chat application with the /chat-only route.
- OpenAI
- Gemini
- Diffbot
- Azure OpenAI (dev deployed version)
- Anthropic (dev deployed version)
- Fireworks (dev deployed version)
- Groq (dev deployed version)
- Amazon Bedrock (dev deployed version)
- Ollama (dev deployed version)
- Deepseek (dev deployed version)
- Other OpenAI-compatible base URL models (dev deployed version)
- Easily monitor and track your LLM token usage for each user and database connection.
- Enable this feature by setting the
TRACK_TOKEN_USAGEenvironment variable totruein your backend configuration. - View your daily and monthly token consumption and limits, helping you manage usage and avoid overages.
- You can check your remaining token limits at any time using the provided API endpoint.
- Neo4j Database 5.23 or later with APOC installed.
- Neo4j Aura databases (including the free tier) are supported.
- If using Neo4j Desktop, you will need to deploy the backend and frontend separately (docker-compose is not supported).
Run the application using the default docker-compose configuration.
-
Supported LLM Models:
By default, only OpenAI and Diffbot are enabled. Gemini requires additional GCP configurations.
Use theVITE_LLM_MODELS_PRODvariable to configure the models you need. Example:VITE_LLM_MODELS_PROD="openai_gpt_5_mini,diffbot,gemini_2.5_flash" -
Input Sources:
By default, the following sources are enabled:local,YouTube,Wikipedia,AWS S3, andweb.
To add Google Cloud Storage (GCS) integration, includegcsand your Google client ID:VITE_REACT_APP_SOURCES="local,youtube,wiki,s3,gcs,web" VITE_GOOGLE_CLIENT_ID="your-google-client-id"
Configure chat modes using the VITE_CHAT_MODES variable:
- By default, all modes are enabled:
vector,graph_vector,graph,fulltext,graph_vector_fulltext,entity_vector, andglobal_vector. - To specify specific modes, update the variable. For example:
VITE_CHAT_MODES="vector,graph"
For development, you can run the backend and frontend independently.
- Create a
.envfile in thefrontendfolder by copyingfrontend/example.env. - Update environment variables as needed.
- Run:
cd frontend
yarn yarn run dev
#### **Backend Setup**
1. Create a `.env` file in the `backend` folder by copying `backend/example.env`.
2. Pre-configure user credentials in the `.env` file to bypass the login dialog:
```bash
NEO4J_URI=<your-neo4j-uri>
NEO4J_USERNAME=<your-username>
NEO4J_PASSWORD=<your-password>
NEO4J_DATABASE=<your-database-name>
- Run:
cd backend
python -m venv envName source envName/bin/activate pip install -r requirements.txt uvicorn score:app --reload
---
### **Cloud Deployment**
Deploy the application on **Google Cloud Platform** using the following commands:
#### **Frontend Deployment**
```bash
gcloud run deploy dev-frontend \
--source . \
--region us-central1 \
--allow-unauthenticated
gcloud run deploy dev-backend \
--set-env-vars "OPENAI_API_KEY=<your-openai-api-key>" \
--set-env-vars "DIFFBOT_API_KEY=<your-diffbot-api-key>" \
--set-env-vars "NEO4J_URI=<your-neo4j-uri>" \
--set-env-vars "NEO4J_USERNAME=<your-username>" \
--set-env-vars "NEO4J_PASSWORD=<your-password>" \
--source . \
--region us-central1 \
--allow-unauthenticated- Pull the docker image of ollama
docker pull ollama/ollama
- Run the ollama docker image
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
- Execute any llm model, e.g., llama3
docker exec -it ollama ollama run llama3 - Configure env variable in docker compose.
LLM_MODEL_CONFIG_ollama_<model_name> # example LLM_MODEL_CONFIG_ollama_llama3=${LLM_MODEL_CONFIG_ollama_llama3-llama3,http://host.docker.internal:11434}
- Configure the backend API url
VITE_BACKEND_API_URL=${VITE_BACKEND_API_URL-backendurl}
- Open the application in browser and select the ollama model for the extraction.
- Enjoy Graph Building.
- Connect to a Neo4j Aura Instance, which can be either AURA DS or AURA DB, by passing the URI and password through the backend environment, filling in the login dialog, or dragging and dropping the Neo4j credentials file.
- To differentiate, we have added different icons. For AURA DB, there is a database icon, and for AURA DS, there is a scientific molecule icon right under the Neo4j Connection details label.
- Choose your source from a list of unstructured sources to create a graph.
- Change the LLM (if required) from the dropdown, which will be used to generate the graph.
- Optionally, define the schema (nodes and relationship labels) in the entity graph extraction settings.
- Either select multiple files to 'Generate Graph', or all the files in 'New' status will be processed for graph creation.
- View the graph for individual files using 'View' in the grid, or select one or more files and 'Preview Graph'.
- Ask questions related to the processed/completed sources to the chatbot. Also, get detailed information about your answers generated by the LLM.
| Env Variable Name | Mandatory/Optional | Default Value | Description |
|---|---|---|---|
| BACKEND ENV | |||
| OPENAI_API_KEY | Mandatory | An OpenAI Key is required to use OpenAI LLM model to authenticate and track requests | |
| DIFFBOT_API_KEY | Mandatory | API key is required to use Diffbot's NLP service to extract entities and relationships from unstructured data | |
| BUCKET | Mandatory | Bucket name to store uploaded files on GCS | |
| NEO4J_USER_AGENT | Optional | llm-graph-builder | Name of the user agent to track Neo4j database activity |
| ENABLE_USER_AGENT | Optional | true | Boolean value to enable/disable Neo4j user agent |
| DUPLICATE_TEXT_DISTANCE | Mandatory | 5 | This value is used to find distance for all node pairs in the graph and is calculated based on node properties |
| DUPLICATE_SCORE_VALUE | Mandatory | 0.97 | Node score value to match duplicate nodes |
| EFFECTIVE_SEARCH_RATIO | Mandatory | 1 | Ratio used for effective search calculations |
| GRAPH_CLEANUP_MODEL | Optional | openai_gpt_4o_mini | Model name to clean up graph in post processing |
| MAX_TOKEN_CHUNK_SIZE | Optional | 10000 | Maximum token size to process file content |
| YOUTUBE_TRANSCRIPT_PROXY | Optional | Proxy key to process YouTube videos for getting transcripts | |
| EMBEDDING_MODEL | Optional | Model for generating text embeddings (default: all-MiniLM-L6-v2, openai, vertexai, titan) | |
| IS_EMBEDDING | Optional | true | Flag to enable text embedding |
| KNN_MIN_SCORE | Optional | 0.94 | Minimum score for KNN algorithm |
| GEMINI_ENABLED | Optional | False | Flag to enable Gemini |
| GCP_LOG_METRICS_ENABLED | Optional | False | Flag to enable Google Cloud logs |
| NUMBER_OF_CHUNKS_TO_COMBINE | Optional | 5 | Number of chunks to combine when processing embeddings |
| UPDATE_GRAPH_CHUNKS_PROCESSED | Optional | 20 | Number of chunks processed before updating progress |
| NEO4J_URI | Optional | neo4j://database:7687 | URI for Neo4j database |
| NEO4J_USERNAME | Optional | neo4j | Username for Neo4j database |
| NEO4J_PASSWORD | Optional | password | Password for Neo4j database |
| LANGCHAIN_API_KEY | Optional | API key for Langchain | |
| LANGCHAIN_PROJECT | Optional | Project for Langchain | |
| LANGCHAIN_TRACING_V2 | Optional | true | Flag to enable Langchain tracing |
| GCS_FILE_CACHE | Optional | False | If set to True, will save files to process into GCS. If False, will save files locally |
| LANGCHAIN_ENDPOINT | Optional | Langchain Endpoint | Endpoint for Langchain API |
| ENTITY_EMBEDDING | Optional | False | If set to True, it will add embeddings for each entity in the database |
| LLM_MODEL_CONFIG_ollama_<model_name> | Optional | Set ollama config as model_name,model_local_url for local deployments | |
| RAGAS_EMBEDDING_MODEL | Optional | Embedding model used by RAGAS evaluation framework | |
| FRONTEND ENV | |||
| VITE_BLOOM_URL | Mandatory | Bloom URL | URL for Bloom visualization |
| VITE_REACT_APP_SOURCES | Mandatory | local,youtube,wiki,s3 | List of input sources that will be available |
| VITE_CHAT_MODES | Mandatory | vector,graph+vector,graph,hybrid | Chat modes available for Q&A |
| VITE_ENV | Mandatory | DEV or PROD | Environment variable for the app |
| VITE_LLM_MODELS | Optional | openai_gpt_5_mini,gemini_2.5_flash,anthropic_claude_4.5_haiku | |
| Supported models for the application | |||
| VITE_BACKEND_API_URL | Optional | localhost | URL for backend API |
| VITE_TIME_PER_PAGE | Optional | 50 | Time per page for processing |
| VITE_CHUNK_SIZE | Optional | 5242880 | Size of each chunk of file for upload |
| VITE_GOOGLE_CLIENT_ID | Optional | Client ID for Google authentication | |
| VITE_LLM_MODELS_PROD | Optional | openai_gpt_5_mini,gemini_2.5_flash,anthropic_claude_4.5_haiku | To distinguish models based on environment (PROD or DEV) |
| VITE_AUTH0_CLIENT_ID | Mandatory if you are enabling Authentication otherwise it is optional | Okta OAuth Client ID for authentication | |
| VITE_AUTH0_DOMAIN | Mandatory if you are enabling Authentication otherwise it is optional | Okta OAuth Client Domain | |
| VITE_SKIP_AUTH | Optional | true | Flag to skip authentication |
| VITE_CHUNK_OVERLAP | Optional | 20 | Variable to configure chunk overlap |
| VITE_TOKENS_PER_CHUNK | Optional | 100 | Variable to configure tokens count per chunk. This gives flexibility for users who may require different chunk sizes for various tokenization tasks |
| VITE_CHUNK_TO_COMBINE | Optional | 1 | Variable to configure number of chunks to combine for parallel processing |
Refer to this link for additional Environment Variables.
You can deploy the backend and the frontend to Google Cloud Run using Cloud Build, either manually or via automated triggers.
-
Connect your repository to Google Cloud Build:
- In the Google Cloud Console, go to Cloud Build > Triggers.
- Create a new trigger and select your repository.
- Set the trigger to run on push to your desired branch (
main,staging, ordev). - Cloud Build will automatically use the
cloudbuild.yamlfile in the root of your repository.
-
Configure Substitutions and Secrets:
- In the trigger settings, add required substitutions (e.g.,
_OPENAI_API_KEY,_DIFFBOT_API_KEY, etc.) as environment variables or use Secret Manager for sensitive data.
- In the trigger settings, add required substitutions (e.g.,
-
Push your code:
- When you push to the configured branch, Cloud Build will build and deploy your backend (and optionally frontend) to Cloud Run using the steps defined in
cloudbuild.yaml.
- When you push to the configured branch, Cloud Build will build and deploy your backend (and optionally frontend) to Cloud Run using the steps defined in
-
Set up Google Cloud SDK and authenticate:
gcloud auth login gcloud config set project <YOUR_PROJECT_ID>
-
Run Cloud Build manually:
gcloud builds submit --config cloudbuild.yaml \ --substitutions=_REGION=us-central1,_REPO=cloud-run-repo,_OPENAI_API_KEY=<your-openai-key>,_DIFFBOT_API_KEY=<your-diffbot-key>,_BUCKET_UPLOAD_FILE=<your-bucket>,_BUCKET_FAILED_FILE=<your-bucket>,_PROJECT_ID=<your-project-id>,_GCS_FILE_CACHE=False,_TRACK_TOKEN_USAGE=True,_TOKEN_TRACKER_DB_URI=...,_TOKEN_TRACKER_DB_USERNAME=...,_TOKEN_TRACKER_DB_PASSWORD=...,_TOKEN_TRACKER_DB_DATABASE=...,_DEFAULT_DIFFBOT_CHAT_MODEL=...,_RAGAS_EMBEDDING_MODEL=...,_YOUTUBE_TRANSCRIPT_PROXY=...,_BEDROCK_EMBEDDING_MODEL=...,_LLM_MODEL_CONFIG_OPENAI_GPT_5_1=...,_LLM_MODEL_CONFIG_OPENAI_GPT_5_MINI=...,_LLM_MODEL_CONFIG_GEMINI_2_5_FLASH=...,_LLM_MODEL_CONFIG_GEMINI_2_5_PRO=...,_LLM_MODEL_CONFIG_DIFFBOT=...,_LLM_MODEL_CONFIG_GROQ_LLAMA3_1_8B=...,_LLM_MODEL_CONFIG_ANTHROPIC_CLAUDE_4_5_SONNET=...,_LLM_MODEL_CONFIG_ANTHROPIC_CLAUDE_4_5_HAIKU=...,_LLM_MODEL_CONFIG_LLAMA4_MAVERICK=...,_LLM_MODEL_CONFIG_FIREWORKS_QWEN3_30B=...,_LLM_MODEL_CONFIG_FIREWORKS_GPT_OSS=...,_LLM_MODEL_CONFIG_FIREWORKS_DEEPSEEK_V3=...,_LLM_MODEL_CONFIG_BEDROCK_NOVA_MICRO_V1=...,_LLM_MODEL_CONFIG_BEDROCK_NOVA_LITE_V1=...,_LLM_MODEL_CONFIG_BEDROCK_NOVA_PRO_V1=...,_LLM_MODEL_CONFIG_OLLAMA_LLAMA3=...
- Replace the values in angle brackets with your actual configuration and secrets.
- You can omit or add substitutions as needed for your deployment.
-
Monitor the build:
- The build and deployment process will be visible in the Cloud Build console.
-
Access your deployed service:
- After deployment, your backend will be available at the Cloud Run service URL shown in the Cloud Console.
Note:
- The
cloudbuild.yamlfile supports multiple environments (main,staging,dev) based on the branch name. - The frontend build and deployment steps are commented out by default. Uncomment them in
cloudbuild.yamlif you wish to deploy the frontend as well.
For more details, see the comments in cloudbuild.yaml.
LLM Knowledge Graph Builder Application
For any inquiries or support, feel free to raise GitHub Issues